Перейти к главному меню навигации Перейти к основному контенту Перейти к нижнему колонтитулу сайта

Психофармакотерапия в подростковом возрасте: нейробиологические предпосылки отдаленных последствий

Аннотация

На протяжении последних десятилетий частота назначения психофармакологических препаратов пациентам подросткового возраста значительно увеличилась, что определяет актуальность вопросов, связанных с отдаленными последствиями психофармакотерапии. Цель работы — проанализировать и обобщить имеющиеся нейробиологические данные для оценки рисков отдаленных последствий воздействия на центральную нервную систему (ЦНС), связанных с приемом психофармакологических препаратов в подростковом возрасте. В статье рассмотрены процессы нейробиологического развития головного мозга на протяжении подросткового периода, обсуждена роль моноаминовых систем в регуляции этих процессов, приведены результаты релевантных экспериментальных исследований. С одной стороны, в своей совокупности имеющиеся данные указывают на то, что препараты, изменяющие активность моноаминергической передачи (в частности, антидепрессанты и антипсихотики), могут потенциально влиять на нормальное развитие и дальнейшее функционирование ЦНС. С другой стороны, эти же препараты гипотетически могут оказывать и «защитное» действие, компенсируя эндогенно и/или экзогенно обусловленные моноаминергические дисфункции, критичные для нормального развития ЦНС в определенные возрастные периоды. Результирующий эффект воздействия моноаминергических препаратов на развивающийся мозг определяется тремя основными факторами: этапом онтогенеза, на котором оказано воздействие; моноаминовой системой, на которую оказано воздействие; направленностью вектора воздействия (снижение либо усиление нейротрансмиссии). Трансляция нейробиологических и экспериментальных данных в клиническую практику требует проведения дальнейших исследований, в том числе направленных на поиск генетических и эпигенетических биомаркеров для разработки будущих алгоритмов персонализированной фармакотерапии психических расстройств в подростковом возрасте.

Ключевые слова

подростковый возраст, психофармакотерапия, антидепрессанты, антипсихотики, моноамины, развитие центральной нервной системы

PDF

Библиографические ссылки

  1. Giedd J.N., Raznahan A., Alexander-Bloch A. et al. Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development // Neuropsychopharmacology. – 2015. – Vol. 40 (1). – Pp. 43–49. – https://doi.org/10.1038/npp.2014.236
  2. Vijayakumar N., Op de Macks Z., Shirtcliff E.A., Pfeifer J.H. Puberty and the human brain: Insights into adolescent development // Neuroscience and Biobehavioral Reviews. – 2018. – Vol. 92. – Pp. 417–436. – https://doi.org/10.1016/j.neubiorev.2018.06.004
  3. World Health Organization. Mental health of adolescents. – 2021. – Available at: https://www.who.int/news-room/fact-sheets/detail/adolescent-mental-health (accessed April 10, 2023).
  4. Silva S.A., Silva S.U., Ronca D.B. et al. Common mental disorders prevalence in adolescents: A systematic review and meta-analyses // PLoS One. – 2020. – Vol. 15 (4). – Art. e0232007. – https://doi.org/10.1371/journal.pone.0232007
  5. Piao J., Huang Y., Han C. et al. Alarming changes in the global burden of mental disorders in children and adolescents from 1990 to 2019: a systematic analysis for the Global Burden of Disease study // European Child and Adolescent Psychiatry. – 2022. – Vol. 31 (11). – Pp. 1827–1845. – https://doi.org/10.1007/s00787-022-02040-4
  6. Steinhausen H.C. Recent international trends in psychotropic medication prescriptions for children and adolescents // European Child and Adolescent Psychiatry. – 2015. – Vol. 24 (6). – Pp. 635–640. – https://doi.org/10.1007/s00787-014-0631-y
  7. Klau J., Bernardo C.O., Gonzalez-Chica D.A., Raven M., Jureidini J. Trends in prescription of psychotropic medications to children and adolescents in Australian primary care from 2011 to 2018 // The Australian and New Zealand Journal of Psychiatry. – 2022. – Vol. 56 (11). – Pp. 1477–1490. – https://doi.org/10.1177/00048674211067720
  8. Radojčić M.R., Pierce M., Hope H. et al. Trends in antipsychotic prescribing to children and adolescents in England: cohort study using 2000-19 primary care data // Lancet Psychiatry. – 2023. – Vol. 10 (2). – Pp. 119–128. – https://doi.org/10.1016/S2215-0366(22)00404-7
  9. Zito J.M., Pennap D., Safer D.J. Antidepressant use in Medicaid-insured youth: Trends, covariates, and future research needs // Frontiers in Psychiatry. – 2020. – Vol. 11. – Art. 113. – https://doi.org/10.3389/fpsyt.2020.00113
  10. Мосолов С.Н. Проблемы психического здоровья в условиях пандемии COVID-19 // Журнал неврологии и психиатрии имени С.С. Корсакова. – 2020. – № 120 (5). – С. 7–15. – https://doi.org/10.17116/jnevro20201200517
  11. Wu T., Jia X., Shi H. et al. Prevalence of mental health problems during the COVID-19 pandemic: a systematic review and meta-analysis // Journal of Affective Disorders. – 2021. – Vol. 281. – Pp. 91–98. – https://doi.org/10.1016/j.jad.2020.11.117
  12. Amill-Rosario A., Lee H., Zhang C., dosReis S. Psychotropic prescriptions during the COVID-19 pandemic among U.S. children and adolescents receiving mental health services // Journal of Child and Adolescent Psychopharmacology. – 2022. – Vol. 32 (7). – Pp. 408–414. – https://doi.org/10.1089/cap.2022.0037
  13. Winters K.C., Arria A. Adolescent brain development and drugs // The Prevention Researcher. – 2011. – Vol. 18 (2). – Pp. 21–24.
  14. Smith R.F., McDonald C.G., Bergstrom H.C., Ehlinger D.G., Brielmaier J.M. Adolescent nicotine induces persisting changes in development of neural connectivity // Neuroscience and Biobehavioral Reviews. – 2015. – Vol. 55. – Pp. 432–443. – https://doi.org/10.1016/j.neubiorev.2015.05.019
  15. Dhein S. Different effects of cannabis abuse on adolescent and adult brain // Pharmacology. – 2020. – Vol. 105 (11–12). – Pp. 609–617. – https://doi.org/10.1159/000509377
  16. Singal D., Chateau D., Struck S. et al. In utero antidepressants and neurodevelopmental outcomes in kindergarteners // Pediatrics. – 2020. – Vol. 145 (5). – Art. e20191157. – https://doi.org/10.1542/peds.2019-1157
  17. Suarez E.A., Bateman B.T., Hernández-Díaz S. et al. Association of antidepressant use during pregnancy with risk of neurodevelopmental disorders in children // Journal of the American Medical Association Internal Medicine. – 2022. – Vol. 182 (11). – Pp. 1149– 1160. – https://doi.org/10.1001/jamainternmed.2022.4268
  18. Correll C.U., Carlson H.E. Endocrine and metabolic adverse effects of psychotropic medications in children and adolescents // Journal of the American Academy of Child and Adolescent Psychiatry. – 2006. – Vol. 45 (7). – Pp. 771–791. – https://doi.org/10.1097/01.chi.0000220851.94392.30
  19. Libowitz M.R., Nurmi E.L. The burden of antipsychotic-induced weight gain and metabolic syndrome in children // Frontiers in Psychiatry. – 2021. – Vol. 12 – Art. 623681. – https://doi.org/10.3389/fpsyt.2021.623681
  20. Patel P.K., Leathem L.D., Currin D.L., Karlsgodt K.H. Adolescent neurodevelopment and vulnerability to psychosis // Biological Psychiatry. – 2021. – Vol. 89 (2). – Pp. 184–193. – https://doi.org/10.1016/j.biopsych.2020.06.028
  21. Paolicelli R.C., Bolasco G., Pagani F. et al. Synaptic pruning by microglia is necessary for normal brain development // Science. – 2011. – Vol. 333 (6048). – Pp. 1456–1458. – https://doi.org/10.1126/science.1202529
  22. Mallya A.P., Wang H.D., Lee H.N.R., Deutch A.Y. Microglial pruning of synapses in the prefrontal cortex during adolescence // Cerebral Cortex. – 2019. – Vol. 29. – Pp. 1634– 1643. – https://doi.org/10.1093/cercor/bhy061
  23. Germann M., Brederoo S.G., Sommer I.E.C. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders // Current Opinion in Psychiatry. – 2021. – Vol. 34 (3). – Pp. 222–227. – https://doi.org/10.1097/YCO.0000000000000696
  24. Moyer C.E., Shelton M.A., Sweet R.A. Dendritic spine alterations in schizophrenia // Neuroscience Letters. – 2015. – Vol. 601. – Pp. 46–53. – https://doi.org/10.1016/j.neulet.2014.11.042
  25. Shaw P., Kabani N.J., Lerch J.P. et al. Neurodevelopmental trajectories of the human cerebral cortex // The Journal of Neuroscience. – 2008. – Vol. 28 (14). – Pp. 3586–3594. – https://doi.org/10.1523/JNEUROSCI.5309-07.2008
  26. Tau G.Z., Peterson B.S. Normal development of brain circuits // Neuropsychopharmacology. – 2010. – Vol. 35 (1). – Pp. 147–168. – https://doi.org/10.1038/npp.2009.115
  27. Petanjek Z., Judaš M., Šimic G. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex // Proceedings of the National Academy of Sciences of the United States of America. – 2011. – Vol. 108 (32). – Pp. 13281–13286. – https://doi.org/10.1073/pnas.1105108108
  28. Kharitonova M., Martin R.E., Gabrieli J.D., Sheridan M.A. Cortical gray-matter thinning is associated with age-related improvements on executive function tasks // Developmental Cognitive Neuroscience. – 2013. – Vol. 6. – Pp. 61–71. – https://doi.org/10.1016/j.dcn.2013.07.002
  29. Zhou D., Lebel C., Treit S., Evans A., Beaulieu C. Accelerated longitudinal cortical thinning in adolescence // Neuroimage. – 2015. – Vol. 104. – Pp. 138–145. – https://doi.org/10.1016/j.neuroimage.2014.10.005
  30. Howard D.M., Adams M.J., Clarke T.K. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions // Nature Neuroscience. – 2019. – Vol. 22 (3). – Pp. 343–352. – https://doi.org/10.1038/s41593-018-0326-7
  31. Peters K.Z., Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period // Frontiers in Neural Circuits. – 2022. – Vol. 16. – Art. 939235. – https://doi.org/10.3389/fncir.2022.939235
  32. Suri D., Teixeira C.M., Cagliostro M.K., Mahadevia D., Ansorge M.S. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors // Neuropsychopharmacology. – 2015. – Vol. 40 (1). – Pp. 88–112. – https://doi.org/10.1038/npp.2014.231
  33. Kraus C., Castrén E., Kasper S., Lanzenberger R. Serotonin and neuroplasticity — Links between molecular, functional and structural pathophysiology in depression // Neuroscience and Biobehavioral Reviews. – 2017. – Vol. 77. – Pp. 317–326. – https://doi.org/10.1016/j.neubiorev.2017.03.007
  34. Illiano P., Leo D., Gainetdinov R.R., Pardo M. Early adolescence prefrontal cortex alterations in female rats lacking dopamine transporter // Biomedicines. – 2021. – Vol. 9 (2). – P. 157. – https://doi.org/10.3390/biomedicines9020157
  35. Reynolds L.M., Flores C. Mesocorticolimbic dopamine pathways across adolescence: diversity in development // Frontiers in Neural Circuits. – 2021. – Vol. 15. – Art. 735625. – https://doi.org/10.3389/fncir.2021.735625
  36. Zhang Y.Q., Lin W.P., Huang L.P. et al. Dopamine D2 receptor regulates cortical synaptic pruning in rodents // Nature Communications. – 2021. – Vol. 12 (1). – Art. 6444. – https://doi.org/10.1038/s41467-021-26769-9
  37. Cao Z., Ottino-Gonzalez J., Cupertino R.B. et al. Characterizing reward system neural trajectories from adolescence to young adulthood // Developmental Cognitive Neuroscience. – 2021. – Vol. 52. – Art. 101042. – https://doi.org/10.1016/j.dcn.2021.101042
  38. Toth B. Differential dopamine dynamics in adolescents and adults // The Journal of Neuroscience. – 2022. – Vol. 42 (14). – Pp. 2853–2855. – https://doi.org/10.1523/JNEUROSCI.2492-21.20222022
  39. Pitzer M. The development of monoaminergic neurotransmitter systems in childhood and adolescence // International Journal of Developmental Neuroscience. – 2019. – Vol. 74. – Pp. 49–55. – https://doi.org/10.1016/j.ijdevneu.2019.02.002
  40. Migliarini S., Pacini G., Pelosi B., Lunardi G., Pasqualetti M. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation // Molecular Psychiatry. – 2013. – Vol. 18 (10). – Pp. 1106–1118. – https://doi.org/10.1038/mp.2012.128
  41. Wegerer V., Moll G.H., Bagli M. et al. Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life // Journal of Child and Adolescent Psychopharmacology. – 1999. – Vol. 9 (1). – Pp. 13–24. – https://doi.org/10.1089/cap.1999.9.13
  42. Bock N., Quentin D.J., Hüther G. et al. Very early treatment with fluoxetine and reboxetine causing long-lasting change of the serotonin but not the noradrenaline transporter in the frontal cortex of rats // The World Journal of Biological Psychiatry. – 2005. – Vol. 6 (2). – Pp. 107–112. – https://doi.org/10.1080/15622970510029731
  43. Badenhorst N.J., Brand L., Harvey B.H., Ellis S.M., Brink C.B. Long-term effects of prepubertal fluoxetine on behaviour and monoaminergic stress response in stress-sensitive rats // Acta Neuropsychiatrica. – 2017. – Vol. 29 (4). – Pp. 222–235. – https://doi.org/10.1017/neu.2016.53
  44. Ansorge M.S., Zhou M., Lira A., Hen R., Gingrich J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice // Science. – 2004. – Vol. 306 (5697). – Pp. 879–881. – https://doi.org/10.1126/science.1101678
  45. Karpova N.N., Lindholm J., Pruunsild P., Timmusk T., Castrén E. Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice // European Neuropsychopharmacology. – 2009. – Vol. 19 (2). – Pp. 97–108. – https://doi.org/10.1016/j.euroneuro.2008.09.002
  46. Bock N., Gerlach M., Rothenberger A. Postnatal brain development and psychotropic drugs. Effects on animals and animal models of depression and attention-deficit/hyperactivity disorder // Current Pharmaceutical Design. – 2010. – Vol. 16 (22). – Pp. 2474–2483. – https://doi.org/10.2174/138161210791959836
  47. Ansorge M.S., Morelli E., Gingrich J.A. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice // The Journal of Neuroscience. – 2008. – Vol. 28 (1). – Pp. 199–207. – https://doi.org/10.1523/JNEUROSCI.3973-07.2008
  48. Yu Q., Teixeira C.M., Mahadevia D. et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice // Molecular Psychiatry. – 2014. – Vol. 19 (6). – Pp. 688–698. – https://doi.org/10.1038/mp.2014.10
  49. Bock N., Moll G.H., Wicker M. et al. Early administration of tiapride to young rats without long-lasting changes in the development of the dopaminergic system // Pharmacopsychiatry. – 2004. – Vol. 37 (4). – Pp. 163–167. – https://doi.org/10.1055/s-2004-827171
  50. Козловский В.Л., Попов М.Ю., Костерин Д.Н., Лепик О.В. Гетерогенность механизма действия антидепрессантов // Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. – 2021. – № 55 (1). – С. 11–17. – https://doi.org/10.31363/2313-7053-2021-1-11-17
  51. Lian J., Deng C. The effects of antipsychotics on the density of cannabinoid receptors in selected brain regions of male and female adolescent juvenile rats // Psychiatry Research. – 2018. – Vol. 266. – Pp. 317–322. – https://doi.org/10.1016/j.psychres.2018.03.030
  52. Barrere-Cain R., Allard P. An understudied dimension: Why age needs to be considered when studying epigenetic-environment interactions // Epigenetics Insights. – 2020. – Vol. 13. – Art. 2516865720947014. – https://doi.org/10.1177/2516865720947014
  53. Andersen S.L., Navalta C.P. Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs // International Journal of Developmental Neuroscience. – 2004. – Vol. 22 (5–6). – Pp. 423–440. – https://doi.org/10.1016/j.ijdevneu.2004.06.002
  54. Singh M.K., Chang K.D. The neural effects of psychotropic medications in children and adolescents // Child and Adolescent Psychiatric Clinics of North America. – 2012. – Vol. 21 (4). – Pp. 753–771. – https://doi.org/10.1016/j.chc.2012.07.010
  55. Lu L., Mills J.A., Li H. et al. Acute neurofunctional effects of escitalopram in pediatric anxiety: A double-blind, placebo-controlled trial // Journal of the American Academy of Child and Adolescent Psychiatry. – 2021. – Vol. 60 (10). – Pp. 1309–1318. – https://doi.org/10.1016/j.jaac.2020.11.023
  56. Capitão L.P., Chapman R., Filippini N. et al. Acute neural effects of fluoxetine on emotional regulation in depressed adolescents // Psychological Medicine. – 2023. – Vol. 53 (10). – Pp. 4799–4810. – https://doi.org/10.1017/S0033291722001805
  57. Croen L.A., Grether J.K., Yoshida C.K., Odouli R., Hendrick V. Antidepressant use during pregnancy and childhood autism spectrum disorders // Archives of General Psychiatry. – 2011. – Vol. 68 (11). – Pp. 1104–1112. – https://doi.org/10.1001/archgenpsychiatry.2011.73
  58. de Vries N.K., van der Veere C.N., Reijneveld S.A., Bos A.F. Early neurological outcome of young infants exposed to selective serotonin reuptake inhibitors during pregnancy: results from the observational SMOK study // PLoS One. – 2013. – Vol. 8 (5). – Art. e64654. – https://doi.org/10.1371/journal.pone.0064654
  59. Dawe S., Davis P., Lapworth K., McKetin R. Mechanisms underlying aggressive and hostile behavior in amphetamine users // Current Opinion in Psychiatry. – 2009. – Vol. 22 (3). – Pp. 269–273. – https://doi.org/10.1097/YCO.0b013e32832a1dd4
  60. Salmanzadeh H., Ahmadi-Soleimani S.M., Pachenari N. et al. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function // Brain Research Bulletin. – 2020. – Vol. 156. – Pp. 105–117. – https://doi.org/10.1016/j.brainresbull.2020.01.007

Скачивания

Данные скачивания пока недоступны.