Skip to main navigation menu Skip to main content Skip to site footer

Psychopharmacological Treatment in Adolescence: Neurobiological Basis for Long-Term Consequences

Abstract

A significant increase in psychotropic drugs prescriptions to adolescents during the last decades raises concerns regarding long-term effects of psychopharmacological treatment. The aim of this paper is to analyze and summarize available neurobiological evidence to assess the risks of long-term neurodevelopmental consequences associated with psychotropic drugs exposure during adolescence. Neurobiological processes underlying brain development during adolescence, including the role of monoamine signaling in regulation of these processes, along with the results of relevant experimental studies, are reviewed. Taken together, the available data indicate that psychotropic drugs influencing monoaminergic signaling (e.g. antidepressants and antipsychotics) might affect normal development and functioning of the brain. On the other hand, the same drugs hypothetically might play a “protective” role, compensating for endo- and/or exogenous monoaminergic dysfunctions interfering with normal neurodevelopment during critical periods of ontogeny. Net effect of the monoaminergic drugs exposure on the developing brain is determined by three main factors: the developmental period during which the monoaminergic interference occurs; the monoamine system which is targeted; the direction of the interference (decreasing or increasing neurotransmission). Translation of neurobiological and experimental data into clinical practice requires further research, including the search for genetic and epigenetic biomarkers aimed at developing future algorithms of personalized treatment of mental disorders in adolescents.

Keywords

adolescence, psychopharmacological treatment, antidepressants, antipsychotics, monoamines, neurodevelopment

PDF (Русский)

References

  1. Giedd J.N., Raznahan A., Alexander-Bloch A. et al. Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development // Neuropsychopharmacology. – 2015. – Vol. 40 (1). – Pp. 43–49. – https://doi.org/10.1038/npp.2014.236
  2. Vijayakumar N., Op de Macks Z., Shirtcliff E.A., Pfeifer J.H. Puberty and the human brain: Insights into adolescent development // Neuroscience and Biobehavioral Reviews. – 2018. – Vol. 92. – Pp. 417–436. – https://doi.org/10.1016/j.neubiorev.2018.06.004
  3. World Health Organization. Mental health of adolescents. – 2021. – Available at: https://www.who.int/news-room/fact-sheets/detail/adolescent-mental-health (accessed April 10, 2023).
  4. Silva S.A., Silva S.U., Ronca D.B. et al. Common mental disorders prevalence in adolescents: A systematic review and meta-analyses // PLoS One. – 2020. – Vol. 15 (4). – Art. e0232007. – https://doi.org/10.1371/journal.pone.0232007
  5. Piao J., Huang Y., Han C. et al. Alarming changes in the global burden of mental disorders in children and adolescents from 1990 to 2019: a systematic analysis for the Global Burden of Disease study // European Child and Adolescent Psychiatry. – 2022. – Vol. 31 (11). – Pp. 1827–1845. – https://doi.org/10.1007/s00787-022-02040-4
  6. Steinhausen H.C. Recent international trends in psychotropic medication prescriptions for children and adolescents // European Child and Adolescent Psychiatry. – 2015. – Vol. 24 (6). – Pp. 635–640. – https://doi.org/10.1007/s00787-014-0631-y
  7. Klau J., Bernardo C.O., Gonzalez-Chica D.A., Raven M., Jureidini J. Trends in prescription of psychotropic medications to children and adolescents in Australian primary care from 2011 to 2018 // The Australian and New Zealand Journal of Psychiatry. – 2022. – Vol. 56 (11). – Pp. 1477–1490. – https://doi.org/10.1177/00048674211067720
  8. Radojčić M.R., Pierce M., Hope H. et al. Trends in antipsychotic prescribing to children and adolescents in England: cohort study using 2000-19 primary care data // Lancet Psychiatry. – 2023. – Vol. 10 (2). – Pp. 119–128. – https://doi.org/10.1016/S2215-0366(22)00404-7
  9. Zito J.M., Pennap D., Safer D.J. Antidepressant use in Medicaid-insured youth: Trends, covariates, and future research needs // Frontiers in Psychiatry. – 2020. – Vol. 11. – Art. 113. – https://doi.org/10.3389/fpsyt.2020.00113
  10. Мосолов С.Н. Проблемы психического здоровья в условиях пандемии COVID-19 // Журнал неврологии и психиатрии имени С.С. Корсакова. – 2020. – № 120 (5). – С. 7–15. – https://doi.org/10.17116/jnevro20201200517
  11. Wu T., Jia X., Shi H. et al. Prevalence of mental health problems during the COVID-19 pandemic: a systematic review and meta-analysis // Journal of Affective Disorders. – 2021. – Vol. 281. – Pp. 91–98. – https://doi.org/10.1016/j.jad.2020.11.117
  12. Amill-Rosario A., Lee H., Zhang C., dosReis S. Psychotropic prescriptions during the COVID-19 pandemic among U.S. children and adolescents receiving mental health services // Journal of Child and Adolescent Psychopharmacology. – 2022. – Vol. 32 (7). – Pp. 408–414. – https://doi.org/10.1089/cap.2022.0037
  13. Winters K.C., Arria A. Adolescent brain development and drugs // The Prevention Researcher. – 2011. – Vol. 18 (2). – Pp. 21–24.
  14. Smith R.F., McDonald C.G., Bergstrom H.C., Ehlinger D.G., Brielmaier J.M. Adolescent nicotine induces persisting changes in development of neural connectivity // Neuroscience and Biobehavioral Reviews. – 2015. – Vol. 55. – Pp. 432–443. – https://doi.org/10.1016/j.neubiorev.2015.05.019
  15. Dhein S. Different effects of cannabis abuse on adolescent and adult brain // Pharmacology. – 2020. – Vol. 105 (11–12). – Pp. 609–617. – https://doi.org/10.1159/000509377
  16. Singal D., Chateau D., Struck S. et al. In utero antidepressants and neurodevelopmental outcomes in kindergarteners // Pediatrics. – 2020. – Vol. 145 (5). – Art. e20191157. – https://doi.org/10.1542/peds.2019-1157
  17. Suarez E.A., Bateman B.T., Hernández-Díaz S. et al. Association of antidepressant use during pregnancy with risk of neurodevelopmental disorders in children // Journal of the American Medical Association Internal Medicine. – 2022. – Vol. 182 (11). – Pp. 1149– 1160. – https://doi.org/10.1001/jamainternmed.2022.4268
  18. Correll C.U., Carlson H.E. Endocrine and metabolic adverse effects of psychotropic medications in children and adolescents // Journal of the American Academy of Child and Adolescent Psychiatry. – 2006. – Vol. 45 (7). – Pp. 771–791. – https://doi.org/10.1097/01.chi.0000220851.94392.30
  19. Libowitz M.R., Nurmi E.L. The burden of antipsychotic-induced weight gain and metabolic syndrome in children // Frontiers in Psychiatry. – 2021. – Vol. 12 – Art. 623681. – https://doi.org/10.3389/fpsyt.2021.623681
  20. Patel P.K., Leathem L.D., Currin D.L., Karlsgodt K.H. Adolescent neurodevelopment and vulnerability to psychosis // Biological Psychiatry. – 2021. – Vol. 89 (2). – Pp. 184–193. – https://doi.org/10.1016/j.biopsych.2020.06.028
  21. Paolicelli R.C., Bolasco G., Pagani F. et al. Synaptic pruning by microglia is necessary for normal brain development // Science. – 2011. – Vol. 333 (6048). – Pp. 1456–1458. – https://doi.org/10.1126/science.1202529
  22. Mallya A.P., Wang H.D., Lee H.N.R., Deutch A.Y. Microglial pruning of synapses in the prefrontal cortex during adolescence // Cerebral Cortex. – 2019. – Vol. 29. – Pp. 1634– 1643. – https://doi.org/10.1093/cercor/bhy061
  23. Germann M., Brederoo S.G., Sommer I.E.C. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders // Current Opinion in Psychiatry. – 2021. – Vol. 34 (3). – Pp. 222–227. – https://doi.org/10.1097/YCO.0000000000000696
  24. Moyer C.E., Shelton M.A., Sweet R.A. Dendritic spine alterations in schizophrenia // Neuroscience Letters. – 2015. – Vol. 601. – Pp. 46–53. – https://doi.org/10.1016/j.neulet.2014.11.042
  25. Shaw P., Kabani N.J., Lerch J.P. et al. Neurodevelopmental trajectories of the human cerebral cortex // The Journal of Neuroscience. – 2008. – Vol. 28 (14). – Pp. 3586–3594. – https://doi.org/10.1523/JNEUROSCI.5309-07.2008
  26. Tau G.Z., Peterson B.S. Normal development of brain circuits // Neuropsychopharmacology. – 2010. – Vol. 35 (1). – Pp. 147–168. – https://doi.org/10.1038/npp.2009.115
  27. Petanjek Z., Judaš M., Šimic G. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex // Proceedings of the National Academy of Sciences of the United States of America. – 2011. – Vol. 108 (32). – Pp. 13281–13286. – https://doi.org/10.1073/pnas.1105108108
  28. Kharitonova M., Martin R.E., Gabrieli J.D., Sheridan M.A. Cortical gray-matter thinning is associated with age-related improvements on executive function tasks // Developmental Cognitive Neuroscience. – 2013. – Vol. 6. – Pp. 61–71. – https://doi.org/10.1016/j.dcn.2013.07.002
  29. Zhou D., Lebel C., Treit S., Evans A., Beaulieu C. Accelerated longitudinal cortical thinning in adolescence // Neuroimage. – 2015. – Vol. 104. – Pp. 138–145. – https://doi.org/10.1016/j.neuroimage.2014.10.005
  30. Howard D.M., Adams M.J., Clarke T.K. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions // Nature Neuroscience. – 2019. – Vol. 22 (3). – Pp. 343–352. – https://doi.org/10.1038/s41593-018-0326-7
  31. Peters K.Z., Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period // Frontiers in Neural Circuits. – 2022. – Vol. 16. – Art. 939235. – https://doi.org/10.3389/fncir.2022.939235
  32. Suri D., Teixeira C.M., Cagliostro M.K., Mahadevia D., Ansorge M.S. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors // Neuropsychopharmacology. – 2015. – Vol. 40 (1). – Pp. 88–112. – https://doi.org/10.1038/npp.2014.231
  33. Kraus C., Castrén E., Kasper S., Lanzenberger R. Serotonin and neuroplasticity — Links between molecular, functional and structural pathophysiology in depression // Neuroscience and Biobehavioral Reviews. – 2017. – Vol. 77. – Pp. 317–326. – https://doi.org/10.1016/j.neubiorev.2017.03.007
  34. Illiano P., Leo D., Gainetdinov R.R., Pardo M. Early adolescence prefrontal cortex alterations in female rats lacking dopamine transporter // Biomedicines. – 2021. – Vol. 9 (2). – P. 157. – https://doi.org/10.3390/biomedicines9020157
  35. Reynolds L.M., Flores C. Mesocorticolimbic dopamine pathways across adolescence: diversity in development // Frontiers in Neural Circuits. – 2021. – Vol. 15. – Art. 735625. – https://doi.org/10.3389/fncir.2021.735625
  36. Zhang Y.Q., Lin W.P., Huang L.P. et al. Dopamine D2 receptor regulates cortical synaptic pruning in rodents // Nature Communications. – 2021. – Vol. 12 (1). – Art. 6444. – https://doi.org/10.1038/s41467-021-26769-9
  37. Cao Z., Ottino-Gonzalez J., Cupertino R.B. et al. Characterizing reward system neural trajectories from adolescence to young adulthood // Developmental Cognitive Neuroscience. – 2021. – Vol. 52. – Art. 101042. – https://doi.org/10.1016/j.dcn.2021.101042
  38. Toth B. Differential dopamine dynamics in adolescents and adults // The Journal of Neuroscience. – 2022. – Vol. 42 (14). – Pp. 2853–2855. – https://doi.org/10.1523/JNEUROSCI.2492-21.20222022
  39. Pitzer M. The development of monoaminergic neurotransmitter systems in childhood and adolescence // International Journal of Developmental Neuroscience. – 2019. – Vol. 74. – Pp. 49–55. – https://doi.org/10.1016/j.ijdevneu.2019.02.002
  40. Migliarini S., Pacini G., Pelosi B., Lunardi G., Pasqualetti M. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation // Molecular Psychiatry. – 2013. – Vol. 18 (10). – Pp. 1106–1118. – https://doi.org/10.1038/mp.2012.128
  41. Wegerer V., Moll G.H., Bagli M. et al. Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life // Journal of Child and Adolescent Psychopharmacology. – 1999. – Vol. 9 (1). – Pp. 13–24. – https://doi.org/10.1089/cap.1999.9.13
  42. Bock N., Quentin D.J., Hüther G. et al. Very early treatment with fluoxetine and reboxetine causing long-lasting change of the serotonin but not the noradrenaline transporter in the frontal cortex of rats // The World Journal of Biological Psychiatry. – 2005. – Vol. 6 (2). – Pp. 107–112. – https://doi.org/10.1080/15622970510029731
  43. Badenhorst N.J., Brand L., Harvey B.H., Ellis S.M., Brink C.B. Long-term effects of prepubertal fluoxetine on behaviour and monoaminergic stress response in stress-sensitive rats // Acta Neuropsychiatrica. – 2017. – Vol. 29 (4). – Pp. 222–235. – https://doi.org/10.1017/neu.2016.53
  44. Ansorge M.S., Zhou M., Lira A., Hen R., Gingrich J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice // Science. – 2004. – Vol. 306 (5697). – Pp. 879–881. – https://doi.org/10.1126/science.1101678
  45. Karpova N.N., Lindholm J., Pruunsild P., Timmusk T., Castrén E. Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice // European Neuropsychopharmacology. – 2009. – Vol. 19 (2). – Pp. 97–108. – https://doi.org/10.1016/j.euroneuro.2008.09.002
  46. Bock N., Gerlach M., Rothenberger A. Postnatal brain development and psychotropic drugs. Effects on animals and animal models of depression and attention-deficit/hyperactivity disorder // Current Pharmaceutical Design. – 2010. – Vol. 16 (22). – Pp. 2474–2483. – https://doi.org/10.2174/138161210791959836
  47. Ansorge M.S., Morelli E., Gingrich J.A. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice // The Journal of Neuroscience. – 2008. – Vol. 28 (1). – Pp. 199–207. – https://doi.org/10.1523/JNEUROSCI.3973-07.2008
  48. Yu Q., Teixeira C.M., Mahadevia D. et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice // Molecular Psychiatry. – 2014. – Vol. 19 (6). – Pp. 688–698. – https://doi.org/10.1038/mp.2014.10
  49. Bock N., Moll G.H., Wicker M. et al. Early administration of tiapride to young rats without long-lasting changes in the development of the dopaminergic system // Pharmacopsychiatry. – 2004. – Vol. 37 (4). – Pp. 163–167. – https://doi.org/10.1055/s-2004-827171
  50. Козловский В.Л., Попов М.Ю., Костерин Д.Н., Лепик О.В. Гетерогенность механизма действия антидепрессантов // Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. – 2021. – № 55 (1). – С. 11–17. – https://doi.org/10.31363/2313-7053-2021-1-11-17
  51. Lian J., Deng C. The effects of antipsychotics on the density of cannabinoid receptors in selected brain regions of male and female adolescent juvenile rats // Psychiatry Research. – 2018. – Vol. 266. – Pp. 317–322. – https://doi.org/10.1016/j.psychres.2018.03.030
  52. Barrere-Cain R., Allard P. An understudied dimension: Why age needs to be considered when studying epigenetic-environment interactions // Epigenetics Insights. – 2020. – Vol. 13. – Art. 2516865720947014. – https://doi.org/10.1177/2516865720947014
  53. Andersen S.L., Navalta C.P. Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs // International Journal of Developmental Neuroscience. – 2004. – Vol. 22 (5–6). – Pp. 423–440. – https://doi.org/10.1016/j.ijdevneu.2004.06.002
  54. Singh M.K., Chang K.D. The neural effects of psychotropic medications in children and adolescents // Child and Adolescent Psychiatric Clinics of North America. – 2012. – Vol. 21 (4). – Pp. 753–771. – https://doi.org/10.1016/j.chc.2012.07.010
  55. Lu L., Mills J.A., Li H. et al. Acute neurofunctional effects of escitalopram in pediatric anxiety: A double-blind, placebo-controlled trial // Journal of the American Academy of Child and Adolescent Psychiatry. – 2021. – Vol. 60 (10). – Pp. 1309–1318. – https://doi.org/10.1016/j.jaac.2020.11.023
  56. Capitão L.P., Chapman R., Filippini N. et al. Acute neural effects of fluoxetine on emotional regulation in depressed adolescents // Psychological Medicine. – 2023. – Vol. 53 (10). – Pp. 4799–4810. – https://doi.org/10.1017/S0033291722001805
  57. Croen L.A., Grether J.K., Yoshida C.K., Odouli R., Hendrick V. Antidepressant use during pregnancy and childhood autism spectrum disorders // Archives of General Psychiatry. – 2011. – Vol. 68 (11). – Pp. 1104–1112. – https://doi.org/10.1001/archgenpsychiatry.2011.73
  58. de Vries N.K., van der Veere C.N., Reijneveld S.A., Bos A.F. Early neurological outcome of young infants exposed to selective serotonin reuptake inhibitors during pregnancy: results from the observational SMOK study // PLoS One. – 2013. – Vol. 8 (5). – Art. e64654. – https://doi.org/10.1371/journal.pone.0064654
  59. Dawe S., Davis P., Lapworth K., McKetin R. Mechanisms underlying aggressive and hostile behavior in amphetamine users // Current Opinion in Psychiatry. – 2009. – Vol. 22 (3). – Pp. 269–273. – https://doi.org/10.1097/YCO.0b013e32832a1dd4
  60. Salmanzadeh H., Ahmadi-Soleimani S.M., Pachenari N. et al. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function // Brain Research Bulletin. – 2020. – Vol. 156. – Pp. 105–117. – https://doi.org/10.1016/j.brainresbull.2020.01.007

Downloads

Download data is not yet available.